Functional Polymers for Electronics, Optics, and Renewable Packaging

Materials for sustainable and renewable technologies

Transparent IR mirrors and thermal switches for heat management (with Yee Lab)

IR mirrors made of hybrid materials can reflect the sun’s radiation and potentially cool a building. Thermal switches can dynamically control the amount of heat.

Figure 1: Window coatings based on Distributed Bragg Reflectors (DBRs) with stopband tunable to infrared, while transmitting visible wavelengths.

Figure 2: Reversible polymerization results in a change in thermal conductivity.

Biomaterials for sustainable packaging (with Meredith and Kyrilak Labs)

Sustainable packaging is enabled by blending and crosslinking renewably-derived polymers and nanomaterials to improve gas barrier performance and recyclability.

Benchmark material

Poly(ethylene) | Water barrier
EVON | Oxygen barrier
PET | Print layer/water barrier

Sustainable alternatives

Carboxymethyl cellulose | Nanocellulose/Nanochitin

Figure 3: Carboxymethyl cellulose has a lower water vapor transmission rate than PET when crosslinked by citric acid (CA).

Figure 4: FTIR spectra showing thermo-reversible crosslinks for designing reusable adhesive layers to make more recyclable multilayer plastics.

Structure-property relationship of semiconductors and blends

Organic semiconductor devices (e.g., OPVs, OFETs, thermoelectrics) rely on a unique property set derived from specific material and its combinations. However, structure-property relationship of such semiconductor materials and their blends, e.g., with respect to transport properties, are not well understood. Here, we focus on different polymers and their blends in order to gain deeper insights into them.

Processing induced liquid-crystalline phases

Figure 5: Processing PBTTI under pressure and sufficiently high temperatures induces increased order of liquid crystalline phase indicated by a unique enthalpic recovery at 61 °C and secondary endothermic peaks at 82°C.

Liquid-crystalline and birefringent materials

Figure 6: Blending P3HT with PVDF may affect the PL lifetime, due to the high dielectric constant of PVDF. We observe a dramatic change in the lineshape of the prompt (0) and delayed (1) PL, indicating that delayed PL stems from regions of the film with different local ordering.

Figure 7: ITIC is a non-fullerene acceptor that undergoes phase transitions when blended and subjected to temperature.

Figure 8: This diagram illustrates a monomer that is not birefringent (left), and a polymer with the same repeat unit that is birefringent due to the orientation of the polymer chains (right).

Inorganic-organic hybrid materials

Mixed conduction materials exhibit simultaneous electronic and ionic conductivity, enabling direct interfacing between electronics and electrochemical systems. Potential applications for mixed conduction include batteries, synthetic neural and cardiomyocyte tissue scaffolds, and biosensors, amongst others.

Reversible swelling of semiconducting copolymer with hydrophilic sidechains (with Reynolds Lab)

Figure 9: Neutral P3ODT copolymer with ‘amphiphilic’ aliphatic and aliphatic ether sidechains swells and deswells reversibly, as shown by electrochemical quartz crystal microbalance with dissipation monitoring.

Mechanical properties of hybrid gels

Figure 10: Increasing titanium oxide hydrate content in inorganic-organic hybrids with poly(vinyl alcohol) results in higher storage and loss moduli, associated with a higher density of crosslinks.

Capacitive sensors for UV detection

Figure 11: Structure of a solution-processed microcavity enabled by multilayers of alternating reflective index and thickness.

Figure 12: Flexible capacitive UV sensors based on polyvinyl alcohol is enabled by manipulating the hydrated titanium oxide concentrations to change the capacitance when exposed to UV doses.

Local ordering of semiconducting polymers

Local ordering affects electrostatic, Coulombic, and general photophysical processes in semiconducting polymers. Thus, understanding the impact of local ordering in these materials is crucial to optimizing them.

Figure 13: Chemical structure and schematics of P3HT (left) and PBTTT (right).

Figure 14: Vector graph of one vibrational pattern of PBTTT oligomer.

Figure 15: Kayaks can be thought of as rigid repeat units. Here, we see local order due to the rigid ‘backbone’ of the kayak (National Geographic).
Manipulating and Characterizing Local Order of Semiconducting Polymers
Stingelin Lab at Georgia Tech

Unraveling differences in disorder of flexible-chain and hairy-rod polymers

(a) P3HT Structurally heterogeneous
(b) PBTTT Structurally homogeneous

Figure 1: Optoelectronic and electrochemical indications of disorder. Chemical structure and microstructure of (a) P3HT and (b) PBTTT. (c) Linear absorption linewidths of P3HT and PBTTT are similar. (b) Nanoscale CVs of P3HT are highly spatially variable, while PBTTT features a much tighter current distribution.

Fast-scanning calorimetry to investigate phase behavior of hairy-rod polymers

(a) (c) N2200
(b) DSC identifies thermal transitions not seen in conventional DSC

Figure 5: Fast differential scanning calorimetry of a hairy-rod polymer to estimate the glass transition temperature. (a) Overview of the physical aging experiment. (b) Representation of structural recovery during aging. (c) Conventional DSC of N2200. (d) Fast DSC of N2200.

Disentangling the complexities of polymer:polymer phase morphology

(a) P3HT
(b) PBTTT

Figure 2: Correlating structural and electronic disorder. (a) Macroscopic electrochemistry identifies a broader density of states (DOS) distribution for P3HT than for PBTTT. (b) 2D electronic spectroscopy separates contributions from static vs. dynamic electronic disorder. (c) Proposed energy level distribution diagrams for flexible-chain and hairy-rod polymers.

Static electronic disorder
Dynamic electronic disorder
Ratcliff and Silva Group Collaboration

Local order in hairy-rod polymer:electrolyte interphases

(a) PBTTT
(b) Ionic Liquid: [C12mim][TFSI]
(c) Electrolyte-rich domains are not phase-pure and more J-like

Figure 6: Manipulating H2 aggregation by blending a hairy-rod polymer with an ionic liquid. (a) Linear absorbance of the PBTTT:IL blends. (b) Hyperluminescence of the 1:2 blend highlights differences in aggregation between IL-rich and PBTTT-rich domains. (c) DSC suggests the presence of two LC phases that vary with blend composition.

Ratcliff Group Collaboration

Separating structural and dielectric effects on exciton recombination

(a) P3HT
(b) PVDF

Figure 7: Photophysics of conjugated polymers in high dielectric environments. (a) Structure of P3HT and PVDF. (b) Schematic of morphology control via chain entanglements. (c) Solid-state NMR suggests nanoscale mixing of high Mw P3HT/PVDF blends. (d) Time-resolved photoluminescence of P3HT and P3HT/PVDF to probe exciton recombination processes.

MREI and Reddy Group Collaboration

Unraveling differences in disorder of flexible-chain and hairy-rod polymers

Disentangling the complexities of polymer:polymer phase morphology

Fast-scanning calorimetry to investigate phase behavior of hairy-rod polymers

Local order in hairy-rod polymer:electrolyte interphases

Separating structural and dielectric effects on exciton recombination

Figure 1: Optoelectronic and electrochemical indications of disorder. Chemical structure and microstructure of (a) P3HT and (b) PBTTT. (c) Linear absorption linewidths of P3HT and PBTTT are similarly broadened. (b) Nanoscale CVs of P3HT are highly spatially variable, while PBTTT features a much tighter current distribution.

Figure 2: Correlating structural and electronic disorder. (a) Macroscopic electrochemistry identifies a broader density of states (DOS) distribution for P3HT than for PBTTT. (b) 2D electronic spectroscopy separates contributions from static vs. dynamic electronic disorder. (c) Proposed energy level distribution diagrams for flexible-chain and hairy-rod polymers.

Figure 3: Manipulating phase morphology in polymer:fullerene blends. (a) Schematic of phase separated vs. intermixed polymer in electrolyte. (b) UV-VIS absorbance spectra of neat and binary PBTTT:PCBM. (c) Raman spectra of binary PBTTT:PCBM showing impact of intercalation vs phase separation.

Figure 4: Controlling intermixing in P3HT:N2200 blends via chain entanglements. DSC of (a) a phase separated blend of low M_w (60 kDa) P3HT:N2200 and (b) an intermixed, high M_w (130 kDa) P3HT:N2200 blend.

Figure 5: Fast differential scanning calorimetry of a hairy-rod polymer to estimate the glass transition temperature. (a) Overview of the physical aging experiment. (b) Representation of structural recovery during aging. (c) Conventional DSC of N2200. (d) Fast DSC of N2200.

Figure 6: Manipulating H2 aggregation by blending a hairy-rod polymer with an ionic liquid. (a) Linear absorbance of the PBTTT:IL blends. (b) Hyperluminescence of the 1:2 blend highlights differences in aggregation between IL-rich and PBTTT-rich domains. (c) DSC suggests the presence of two LC phases that vary with blend composition.

Figure 7: Photophysics of conjugated polymers in high dielectric environments. (a) Structure of P3HT and PVDF. (b) Schematic of morphology control via chain entanglements. (c) Solid-state NMR suggests nanoscale mixing of high M_w P3HT/PVDF blends. (d) Time-resolved photoluminescence of P3HT and P3HT/PVDF to probe exciton recombination processes.

MREI and Reddy Group Collaboration