Skip to content

Materials Science and Engineering Georgia Institute of Technology Materials Science and Engineering

Menu
Close
  • ABOUT
    • CHAIR'S WELCOME
    • WHAT IS MSE?
    • ADVISORY BOARD
    • HISTORY
    • CONTACTS & DIRECTIONS
    • OUTREACH ACTIVITIES
    • STRATEGIC PLAN
    • CAREER OPPORTUNITIES
    • AVAILABLE POSITIONS
  • VALUES
    • DIVERSITY AND INCLUSION
    • CREATING RESISTANCE TO SEXUAL HARASSMENT (CRSH)
  • GRADUATE
    • CURRENT STUDENTS
    • PROSPECTIVE STUDENTS
    • FAQ
    • REQUEST INFO
    • APPLY NOW
    • CERTIFICATES
  • PROSPECTIVE STUDENTS
    • GRADUATE
    • UNDERGRADUATE
  • UNDERGRADUATE
    • ACADEMIC ADVISING
    • CURRICULUM
    • MENTORING PROGRAM
    • MSE MINOR AND CERTIFICATES
    • PROSPECTIVE STUDENTS
    • REQUEST INFO
    • RESEARCH
    • SCHOLARSHIPS
    • STUDENT RESOURCES
    • CHANGE MAJOR
  • PEOPLE
    • ALL
    • FTE FACULTY
    • STAFF
    • ACADEMIC PROFESSIONALS
    • RESEARCH SCIENTISTS/POST DOCS
    • ADJUNCT FACULTY
    • COURTESY APPOINTMENTS
    • EMERITUS FACULTY
    • GRAD STUDENTS
    • ADMINISTRATION
    • STAFF - WHO DOES WHAT
  • GIVING
    • STUDENT SUPPORT
    • SUPPORTING THE MILL
    • SUPPORTING RESEARCH AND FACULTY
    • SUPPORTING THE SCHOOL
    • WHY GIVE NOW
    • WAYS TO GIVE
  • MILL
  • RESEARCH
    • MATERIALS AND CHALLENGES
    • RESEARCH CENTERS
    • INDUSTRY RELATIONS
    • TOPICAL WORKING GROUPS
    • FACULTY RESEARCH OVERVIEW
  • INDUSTRY
  • SAFETY
  • Georgia Tech Home
  • Campus Map
  • Directory
  • Offices
  • Facebook
  • YouTube
Search

Search form

  • You are here:
  • Home

Frenkel Biexcitons Light Up Organic Semiconductor Advances

A team led by Carlos Silva Acuña and Natalie Stingelin finds a way to track and measure biexcitons: the energy behind the light-emitting qualities of organic semiconductors. 

Organic semiconductors already provide the energy behind optical technologies inside television displays, solar cells, and lighting fixtures. Their molecular carbon-based structure makes them cheaper to produce, more flexible, of lighter weight, and more environmentally friendly than silicon-based or composite semiconductors. The future in more applications is bright — if scientists can learn more about harnessing their ability to react to and produce light.

A team of Georgia Tech researchers brings us one step closer to understanding those properties. Their new study, published in Science Advances, for the first time brings tracking and measurement to organic semiconductor photoexcitations: particles put into “excited” or energized quantum states by light.

More

Carlos Silva Acuña, Natalie Stingelin

ABOUT

  • About
    • Chair's Welcome
    • Strategic Plan
    • What is MSE?
    • Careers
    • History
    • Contacts & Directions
    • Outreach Activities
    • External Advisory Board
    • Events
      • Past Events
    • News
    • Seminars
      • Brumley D Pritchett Lecture Series
      • Industry Executive Seminars
      • Past Seminars
      • Upcoming Seminars

Student Resources

  • Undergraduate Handbook
  • Undergraduate Registration
  • Overload Requests
  • Graduate Handbook
  • Lab Safety Policy
  • Student Mentoring Program

Faculty & Staff Resources

  • Faculty & Staff Directory
  • Administration
  • Institute for Materials
  • Financial Forms

Quick Links

  • College of Engineering
  • COE Ethics Statement
  • Bursar's Office
  • Registrar's Office
  • International Education
  • Financial Aid
  • Student Affairs
  • Tech Lingo
  • Title IX/Sexual Misconduct
Map of Georgia Tech

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: 404-894-2000

  • Emergency Information
  • Legal & Privacy Information
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
  • Login
Georgia Tech

© Georgia Institute of Technology